Abstract
Abstract. Pole-like object (PLO) detection and segmentation are important in many applications, such as 3D city modelling, urban planning, road assets monitoring, intelligent transportation, road safety, and forest monitoring. Arguably, vehicle-based mobile laser scanning (MLS) is the best on-road data acquisition system, because it is fast, precise and non-invasive. As part of that, laser scanning georeferenced data (i.e., point clouds) provide detailed structural morphology of the scanned objects. However, point clouds are not free from outliers and noise. Critically, many of the object extraction methods that depend on local saliency features (e.g., normals)-based segmentation use principal component analysis (PCA). PCA can provide the local features but struggle to produce robust results in the presence of outliers and noise. To reduce the influence of outliers for saliency features estimation and in segmentation, this paper employs Robust distance-based Diagnostic PCA (RD-PCA) coupled with the well-known DBSCAN clustering algorithm. This study contributes to a better understanding of object detection and segmentation by (i) exploring the problems of local saliency features estimation in the presence of outliers and noise; (ii) understanding problems with PCA and why RD-PCA is important; and (iii) introducing a novel method for PLOs detection and segmentation following a robust segmentation approach. The performance of the new algorithm is demonstrated through MLS data acquired in an urban road setup.