COMPARISON OF THE PERFORMANCE OF GRADIENT BOOSTING, LOGISTIC REGRESSION, AND LINEAR SUPPORT VECTOR CLASSIFIER ALGORITHMS IN CLASSIFYING TRAVEL MODES BASED ON GNSS DATA

Author:

Shamohammadi O.,Pahlavani P.,Sharifi M. A.

Abstract

Abstract. Public transportation system capacity must be compatible with the frequency of daily trips. Smart mobile phones can collect positioning data at different times, which can detect transportation modes people use for their daily commutes. This information helps the government predict how many vehicles are needed to satisfy public transportation system demands. This article investigates the performance of three different machine learning models, including Gradient Boosting (GB), Logistic Regression (LR), and linear Support Vector Classifier (SVC) in classifying the trip types. Thirty-nine features, including statistical parameters of velocity, acceleration, and jerk, and also parameters representing the time of each trip, are given to the models as input. To increase the performance of the models, with the help of thresholding, points corresponding to noise are detected and removed from the dataset. Moreover, to fill the possible gaps and smooth the trajectories, spline interpolation and Savitzky-Golay filter are also investigated in feature calculation. The results show that the linear models are incapable of distinguishing between different classes well and they are over-fitted to classed with more samples. Hence, the GB by 0.93 recall, precision, and F-score was the best model in determining the vehicle used compared to LR and linear SVC.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3