QUANTUM INSPIRED GENETIC ALGORITHM FOR BI-LEVEL THRESHOLDING OF GRAY-SCALE IMAGES

Author:

Pai A. G.,Buddhiraju K. M.,Durbha S. S.

Abstract

Abstract. Thresholding is the primitive step in the process of image segmentation. Finding the optimal threshold for satellite images with reduced computation time and resources is still a challenging task. In this paper, we propose a Grey-Level Co-occurrence Matrix based Quantum Inspired Genetic Algorithm (QGA-GLCM) for bi-level thresholding of gray-scale images (natural and satellite). In this paper, QGA was used to find the optimal threshold. The results are compared with four different variants of Differential Evolution (DE) meta-heuristic algorithms, namely- DE-Otsu, DE-Kapur, DE-Tsali’s, DE-GLCM, and three different variants of QGA, namely- QGA-Otsu, QGA-Kapur, QGA-Tsali’s. Intensity value from image pixel is the only information used by Otsu, Tsali’s and Kapur for thresholding and are highly affected by noise. The main objective of this paper was a) To have a binary threshold for images corrupted with noise by bringing in spatial context b) To reduce the computational complexity and time for generating a threshold. Performance evaluators viz., CPU time, Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), and Structural Similarity Index Measure (SSIM) were used for quantitative assessment of partitioned images. From this study we observed that our proposed technique, QGA-GLCM is a) very good at producing a diverse population b) ten times faster than its classical counterparts c) generates better threshold for images corrupted by noise. In general, the threshold values generated by QGA and its variants are better than its classical counterparts. The results clearly show that exploration and exploitation capability of QGA is superior to DE for all variants. QGA-GLCM can be an effective technique to generate thresholds both in terms of computational speed and time.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mold Flow Melting and Crystallization Based on Image Extraction Technology;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3