EXTRACTION OF POINT CLOUD-BASED INFORMATION FOR POWERLINE CORRIDORS

Author:

Askit C.,Ates D.,Bakir I.,Seyfeli S.ORCID,Ok A. O.

Abstract

Abstract. It has been a challenge for electric power management to automatically extract power lines from LiDAR point clouds. However, environmental and technical issues have made management more challenging in complicated areas where power lines are in close proximity to buildings and/or trees. In this study, the structure and types of the data captured by a LiDAR sensor in regions containing line corridors were analysed. The crucial stage is appropriately identifying from the data the essential parts of a power line corridor route. The point cloud dataset used in the study belongs to the Borssele region in Zeeland, the Netherlands. By manually labelling the dataset, three classes were identified: wire, pylon, and others. For the classification of point clouds, the Random Forest method was utilised. To assess the obstacles posed by the class wire, 5 m, 10 m, and 15 m 3D buffer zones are created. The visual presentation of obstacles within the buffer zone is achieved by assigning them a separate class code and indicating that they are inside and partially within. Based on the results, the correctness values of the classes of wire and others are considered to be satisfactory. However, the class pylon contains points with incorrect labels after the classification. As a result, the accuracy of the pylon class is much lower than the accuracy of the other two classes.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3