TOWARDS CONTINUOUS CONTROL FOR MOBILE ROBOT NAVIGATION: A REINFORCEMENT LEARNING AND SLAM BASED APPROACH

Author:

Mustafa K. A. A.,Botteghi N.,Sirmacek B.,Poel M.,Stramigioli S.

Abstract

Abstract. We introduce a new autonomous path planning algorithm for mobile robots for reaching target locations in an unknown environment where the robot relies on its on-board sensors. In particular, we describe the design and evaluation of a deep reinforcement learning motion planner with continuous linear and angular velocities to navigate to a desired target location based on deep deterministic policy gradient (DDPG). Additionally, the algorithm is enhanced by making use of the available knowledge of the environment provided by a grid-based SLAM with Rao-Blackwellized particle filter algorithm in order to shape the reward function in an attempt to improve the convergence rate, escape local optima and reduce the number of collisions with the obstacles. A comparison is made between a reward function shaped based on the map provided by the SLAM algorithm and a reward function when no knowledge of the map is available. Results show that the required learning time has been decreased in terms of number of episodes required to converge, which is 560 episodes compared to 1450 episodes in the standard RL algorithm, after adopting the proposed approach and the number of obstacle collision is reduced as well with a success ratio of 83% compared to 56% in the standard RL algorithm. The results are validated in a simulated experiment on a skid-steering mobile robot.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SLAYO-RL: A Target-Driven Deep Reinforcement Learning Approach with SLAM and YoLo for an Enhanced Autonomous Agent;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

2. YG-SLAM: Enhancing Visual SLAM in Dynamic Environments With YOLOv8 and Geometric Constraints;IEEE Access;2023

3. Mobile Robot Navigation Using Deep Reinforcement Learning;Processes;2022-12-19

4. Deep Reinforcement Learning-Based 3D Exploration with a Wall Climbing Robot;TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON);2021-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3