MAPPING ROBINIA PSEUDOACACIA FOREST HEALTH CONDITIONS BY USING COMBINED SPECTRAL, SPATIAL AND TEXTUREAL INFORMATION EXTRACTED FROM IKONOS IMAGERY

Author:

Wang H.,Zhao Y.,Pu R.,Zhang Z.

Abstract

Abstract. In this study grey-level co-occurrence matrix (GLCM) textures and a local statistical analysis Getis statistic (Gi), computed from IKONOS multispectral (MS) imagery acquired from the Yellow River Delta in China, along with a random forest (RF) classifier, were used to discriminate Robina pseudoacacia tree health levels. The different RF classification results of the three forest health conditions were created: (1) an overall accuracy (OA) of 79.5% produced using the four MS band reflectances only; (2) an OA of 97.1% created with the eight GLCM features calculated from IKONOS Band 4 with the optimal window size of 13 × 13 and direction 45°; (3) an OA of 94.0% created using the four Gi features calculated from the four IKONOS MS bands with the optimal distance value of 5 and Queen’s neighborhood rule; and (4) an OA of 96.9% created with the combined 16 spectral (four), spatial (four), and textural (eight) features. The experimental results demonstrate that (a) both textural and spatial information was more useful than spectral information in determining the Robina pseudoacacia forest health conditions; and (b) IKONOS NIR band was more powerful than visible bands in quantifying varying degree of forest crown dieback.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3