SFOC: A NOVEL MULTI-DIRECTIONAL AND MULTI-SCALE STRUCTURAL DESCRIPTOR FOR MULTIMODAL REMOTE SENSING IMAGE MATCHING

Author:

Zhu B.,Zhang J.,Tang T.,Ye Y.

Abstract

Abstract. Accurate matching of multimodal remote sensing (RS) images (e.g., optical, infrared, LiDAR, SAR, and rasterized maps) is still an ongoing challenge because of nonlinear radiometric differences (NRD) between these images. Considering that structural properties are preserved between multimodal images, this paper proposes a robust matching method based on multi-directional and multi-scale structural features, which consist of two critical steps. Firstly, a novel structural descriptor named the Steerable Filters of first- and second-Order Channels (SFOC) is constructed to address severe NRD, which combines the first- and second-order gradient information by using the steerable filters to depict multi-directional and multi-scale structural features of images. Meanwhile, SFOC is further enhanced by performing the dilated Gaussian convolutions with different dilated rates on it, which can capture multi-level context structural features and improve the ability to resist noise. Then, a fast similarity measure, called Fast Normalized Cross-Correlation (Fast-NCCSFOC), is established to detect correspondences by a template matching scheme, which employs the Fast Fourier Transform (FFT) technique and the integral image to improve the matching efficiency. The performance of the proposed SFOC has been evaluated with many different kinds of multimodal RS images, and experimental results show its superior matching performance compared with the state-of-the-art methods.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast Double-Channel Aggregated Feature Transform for Matching Planetary Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. Multimodal Colearning Meets Remote Sensing: Taxonomy, State of the Art, and Future Works;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. MULTI-ORIENTATION EDGE-BASED SATELLITE IMAGE MATCHING METHOD FOR OPTICAL AND SAR IMAGES;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

4. Advances and Challenges in Multimodal Remote Sensing Image Registration;IEEE Journal on Miniaturization for Air and Space Systems;2023-06

5. R₂FD₂: Fast and Robust Matching of Multimodal Remote Sensing Images via Repeatable Feature Detector and Rotation-Invariant Feature Descriptor;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3