COMPARISON OF SINGLE-IMAGE URBAN HEIGHT RECONSTRUCTION FROM OPTICAL AND SAR DATA

Author:

Schmitt M.,Recla M.

Abstract

Abstract. Deep learning-based depth estimation has become an important topic in recent years, not only in the field of computer vision. Also in the context of remote sensing, scientists started a few years ago to adapt or develop suitable approaches to realize a reconstruction of the Earth’s surface without requiring several images. There are many reasons for this: First, of course, the aspect of general economization, since especially high-resolution satellite images are often accompanied by high data acquisition costs. In addition, there is also the desire to be able to acquire high-quality geoinformation as quickly as possible in time-critical cases – for example, the provision of up-to-date maps for emergency forces in disaster scenarios. Finally, a reconstruction of topography based only on single images can also provide important approximate values for the classic multi-image methods. For example, various processing steps in a classical InSAR process chain require a rough knowledge of the Earth’s surface in order to achieve the most accurate and reliable results. In this paper, we review the developments documented in the remote sensing literature so far. Using an established neural network architecture, we produce example results for both very-high-resolution SAR and optical imagery. The comparison shows that SAR-based single-image-height reconstruction seems to bear an even greater potential than single-image height reconstruction from optical data.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3