STORM DRAIN DETECTION AND LOCALISATION ON MOBILE LIDAR DATA USING A PRE-TRAINED RANDLA-NET SEMANTIC SEGMENTATION NETWORK

Author:

Mattheuwsen L.,Bassier M.,Vergauwen M.

Abstract

Abstract. As the expansion of cities and urban areas results in the construction of more impermeable road surfaces, a well designed urban drainage system becomes of greater importance. However, the accurate and up-to-date mapping of storm drains necessary to create accurate drainage models is often lacking. In recent years, mapping of the road infrastructure is increasingly carried out by highly efficient mobile mapping systems but which lack automatic interpretation of the massive amount data. In this paper we present a fully automatic storm drain detection method to extract and locate storm drain inlets in mobile mapping lidar data. The point cloud is first segmented by a pre-trained RandLa-Net model, which although untrained to segment storm drains, is able the segment storm drain clusters in the hardscape class. The results from this class are further processed by enforcing different requirements to only extract and locate storm drain clusters. Our approach is evaluated on a large testing dataset with 171 storm drains and achieves 81.9%, 95.2% and 88.1% for recall, precision and F1-score respectively. The majority of the false positive and false negative detections are due to incorrect point cloud segmentation of the RandLa-Net. In terms of localisation, our approach achieves an RMSE of 5.5 cm on the centre location while the dimensions of the bounding box are on average 23% off compared to the ground truth.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. YOLO-SDD: An Improved YOLOv5 for Storm Drain Detection in Street-Level View;Journal of Shanghai Jiaotong University (Science);2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3