ADDRESSING CLASS IMBALANCE IN MULTI-CLASS IMAGE CLASSIFICATION BY MEANS OF AUXILIARY FEATURE SPACE RESTRICTIONS

Author:

Dorozynski M.,Rottensteiner F.

Abstract

Abstract. Learning from imbalanced class distributions generally leads to a classifier that is not able to distinguish classes with few training examples from the other classes. In the context of cultural heritage, addressing this problem becomes important when existing digital online collections consisting of images depicting artifacts and assigned semantic annotations shall be completed automatically; images with known annotations can be used to train a classifier that predicts missing information, where training data is often highly imbalanced. In the present paper, combining a classification loss with an auxiliary clustering loss is proposed to improve the classification performance particularly for underrepresented classes, where additionally different sampling strategies are applied. The proposed auxiliary loss aims to cluster feature vectors with respect to the semantic annotations as well as to visual properties of the images to be classified and thus, is supposed to help the classifier in distinguishing individual classes. We conduct an ablation study on a dataset consisting of images depicting silk fabrics coming along with annotations for different silk-related classification tasks. Experimental results show improvements of up to 10.5% in average F1-score and up to 20.8% in the F1-score averaged over the underrepresented classes in some classification tasks.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ADDRESSING CLASS IMBALANCE FOR TRAINING A MULTI-TASK CLASSIFIER IN THE CONTEXT OF SILK HERITAGE;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3