PROBABILISTIC VEGETATION TRANSITIONS IN DUNES BY COMBINING SPECTRAL AND LIDAR DATA

Author:

Kathmann H. S.,van Natijne A. L.ORCID,Lindenbergh R. C.ORCID

Abstract

Abstract. Monitoring the status of the vegetation is required for nature conservation. This monitoring task is time consuming as kilometers of area have to be investigated and classified. To make this task more manageable, remote sensing is used. The acquisition of airplane remote sensing data is dependent on weather conditions and permission to fly in the busy airspace above the Netherlands. These conditions make it difficult to get a new, dedicated acquisition every year. Therefore, alternatives for this dependency on dedicated airplane surveys are needed. One alternative is the use of optical satellite imagery, as this type of data has improved rapidly in the last decade both in terms of resolution and revisit time. For this study, 0.5 m resolution satellite imagery from the Superview satellite is combined with geometric height data from the Dutch national airborne LiDAR elevation data set AHN. Goal is to classify vegetation into three different classes: sand, grass and trees, apply this classification to multiple epochs, and analyze class transition patterns. Three different classification methods were compared: nearest centroid, random forest and neural network. We show that outcomes of all three methods can be interpreted as class probabilities, but also that these probabilities have different properties for each method. The classification is implemented for 11 different epochs on the Meijendel en Berkheide dunal area on the Dutch coast. We show that mixed probabilities (i.e. between two classes) agree well with class transition processes, and conclude that a shallow neural network combined with pure training samples applied on four different bands (RGB + relative DSM height) produces satisfactory results for the analysis of vegetation transitions with accuracies close to 100%.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3