SURFACE HANDWRITING ENHANCEMENT OF ARTIFACTS BASED ON MANIFOLD LEARNING AND MIXED PIXEL DECOMPOSITION

Author:

Wang S. H.,Lyu S. Q.,Hou M. L.,Gao Z. H.,Huang M.

Abstract

Abstract. Written information on the surface of cultural relics can record important historical events. Due to the influence of natural and human factors, the surface of cultural relics fades and the words are difficult to identify. Take advantage of the hyperspectral data image and spectral unity and wide spectral range, a cultural relics surface handwriting enhancement method based on manifold learning and mixed pixel decomposition was proposed. First, the minimum noise fraction (MNF) transformation was carried out on the hyperspectral image, and then the top 10 bands were selected for inverse MNF transformation to reduce noise of the hyperspectral image. Then, the reconstructed image was dimensionally reduced by locally linear embedding (LLE) to obtain a gray image with the maximum amount of information. At the same time, the spectral features of the handwriting and background area in the reconstructed image were analysed. The automatic target generation process (ATGP) was adopted for endmember extraction on the reconstructed image to identify the endmember of handwriting. The abundance map of handwriting area was obtained by the fully constrained least squares (FCLS). Finally, the gray image and the abundance map of the handwriting region were weighted together to obtain the handwriting enhanced image. The true color image was synthesized from the reconstructed image, Then the true color image and the handwriting enhancement image were fused to obtain the handwritting fusion image. The hyperspectral image of a faded text in Shuozhou City, Shanxi Province, China, was used as an example for verification, and the results showed that the method can effectively enhance the text on the surface of the artifacts.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Protection and Management of Cultural Heritage Based on Deep Learning Technology;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3