INTEGRATION OF KALMAN FILTERING OF NEAR-CONTINUOUS SURFACE CHANGE TIME SERIES INTO THE EXTRACTION OF 4D OBJECTS-BY-CHANGE

Author:

Anders K.ORCID,Winiwarter L.ORCID,Schröder D.,Höfle B.

Abstract

Abstract. Automatic extraction of surface activity from near-continuous 3D time series is essential for geographic monitoring of natural scenes. Recent change analysis methods leverage the temporal domain to improve the detection in time and the spatial delineation of surface changes, which occur with highly variable spatial and temporal properties. 4D objects-by-change (4D-OBCs) are specifically designed to extract individual surface activities which may occur in the same area, both consecutively or simultaneously. In this paper, we investigate how the extraction of 4D-OBCs can improve by considering uncertainties associated to change magnitudes using Kalman filtering of surface change time series. Based on the change rate contained in the Kalman state vector, the method automatically detects timespans of accumulation and erosion processes. This renders change detection independent from a globally fixed minimum detectable change value. Considering uncertainties associated to change allows detecting and classifying more occurrences of relevant surface activity, depending on the change rate and magnitude. We compare the Kalman-based seed detection to a regression-based method using a three-month tri-hourly terrestrial laser scanning time series (763 epochs) acquired of mass movements at a high-mountain slope in Austria. The Kalman-based method successfully identifies all relevant changes at the example location for the extraction of 4D-OBCs, without requiring the definition of a global minimum change magnitude. In the future, we will further investigate which kind of change detection method is best suited for which types of surface activity.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3