APPLICATION OF STEREO CAMERAS WITH WIDE-ANGLE LENSES FOR THE INDOOR MAPPING

Author:

Wierzbicki D.,Stogowski P.

Abstract

Abstract. Recently, there has been an increase in interest in the use of wide-angle cameras in multi-image matching for the indoor 3D mapping and indoor localization. The demand for rapid 3D models of spaces in unknown environments is increasingly observed. That is particularly important when modelling unknown objects to conduct reconnaissance or building intervention after a disaster. In this case, developing a 3D model using a robot equipped with a system of synchronized stereo cameras with a short length longitudinal base is extremely desirable. In these studies, we present the approach to indoor location based on a 3D model developed from a dense point cloud with multi-image matching technique. As part of the research, an imaging system was developed, and an algorithm that converts images of selected objects to 3D model was implemented. The research presents the method of determining the object position based on the calculation of reference points’ disparity based on the Sum of Absolute Differences (SAD). Next, a dense point cloud was generated based on the method of mutual image matching using Structure from Motion (SfM) algorithms. The resulting dense cloud of points had a resolution of 0.05 m. Based on the developed algorithm, a method for generating a quick model of the environment based on multi-image matching and disparity maps was presented. The obtained test results confirmed the possibilities of using the developed methodology for the needs of rapid reconnaissance of the environment to determine the distance, location and size of objects of interest. The mapping accuracy is at a decimeter level, and the possibility of geolocation of objects can be performed with an accuracy of ± 0.15 m. Based on the obtained test results, the potential of using miniature, portable mobile image-based mapping systems has been demonstrated to identify and model inaccessible rooms. Further work will be focused on the improvement of the geometric image quality and to increase the accuracy of the calibration.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3