MULTIMODE SATELLITE IMAGE HYBRID BLOCK-ADJUSTMENT AND ITS APPLICATION IN LARGE AREA ORTHOPHOTO IMAGE PROCESSING

Author:

Zhang H.,Yang Y.,Wang D.

Abstract

Abstract. Different satellite images have different positioning accuracy. For example, stereo satellite images have higher positioning accuracy than resource survey satellite images. In addition, for a large number of non stereo satellite images, due to the inability to build a strong triangulation model, it is impossible to carry out block adjustment alone to improve the image positioning accuracy. High precision and high resolution Orthophoto Images are the basis of resource investigation and monitoring and basic geographic information updating. For example, China's third national land survey, national geographic situation monitoring and other national projects require that the survey base map must reach the accuracy of 1:10000 scale, that is, the mean square plane error of points is less than 5m. For most satellite images, a certain number of ground control points need to be deployed to achieve this accuracy. Due to the difficulty of obtaining high-precision ground control points and DEM data in difficult areas, high-precision mapping has always been an unsolved problem, such as Western China. In addition, due to the limited coverage of a single satellite image, to realize the complete coverage of an image in a large area requires the joint application of multiple satellite images. In this paper, the high-precision collaborative geometric processing model and technical method of high-resolution multi-source remote sensing satellite images are proposed. The high-precision collaborative geometric processing of more than ten kinds of high-resolution domestic satellite images is completed by integrating multi-source observation data. An automatic construction method of large-scale block adjustment model of remote sensing images from domestic satellites based on multivariate generalized control network is proposed, including key technologies such as automatic optimization of optimal tie points under different modes, automatic matching of multi-node parallelization tie points, multi-level gross error elimination and so on, which realizes the automatic and stable construction of aerial triangulation model. The test shows that the positioning accuracy of satellite images is better than the accuracy requirements of 1:10000 scale without ground control points, which solves the problem of geometric positioning of 1:10000 scale accuracy in areas where it is difficult to obtain ground control points in the field of Western China.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3