A MULTI-SCALE POINT CLOUDS SEGMENTATION METHOD FOR URBAN SCENE CLASSIFICATION USING REGION GROWING BASED ON MULTI-RESOLUTION SUPERVOXELS WITH ROBUST NEIGHBORHOOD

Author:

Huang J.,Xie L.,Wang W.,Li X.,Guo R.

Abstract

Abstract. Point clouds classification is the basis for 3D spatial information extraction and applications. The point-clusters-based methods are proved to be more efficient and accurate than the point-based methods, however, the precision of the classification is significantly affected by the segmentation errors. The traditional single-scale point clouds segmentation methods cannot segment complex objects well in urban scenes which will result in inaccurate classification. In this paper, a new multi-scale point clouds segmentation method for urban scene point clouds classification is proposed. The proposed method consists of two stages. In the first stage, to ease the segmentation errors caused by density anisotropy and unreasonable neighborhood, a multi-resolution supervoxels segmentation algorithm is proposed to segment the objects into small-scale clusters. Firstly, the point cloud is segmented into initial supervoxels based on geometric and quantitative constraints. Secondly, robust neighboring relationships between supervoxels are obtained based on kd-tree and octree. Furthermore, the resolution of supervoxels in the planar and low-density region is optimized. In the second stage, planar supervoxels are clustered into the large-scale planar point clusters based on the region growing algorithm. Finally, a mix of small-scale and large-scale point clusters is obtained for classification. The performance of the segmentation method in classification is compared with other segmentation methods. Experimental results revealed that the proposed segmentation method can significantly improve the efficiency and accuracy of point clouds classification than other segmentation methods.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3