LOW-COST DEPTH-CAMERA: OPEN-SOURCE 3D DISPLACEMENT MEASUREMENTS FOR 4D PRINTED HYGROSCOPIC COMPOSITES

Author:

Bianconi F.,Filippucci M.,Pelliccia G.,Rossi G.,Tocci T.,Tribbiani G.,Correa D.

Abstract

Abstract. 4D printing (4DP) is a growing branch of 3D printing technology that involves the design of composite material architectures capable of shape-change transformations, which occur post printing, in response to external stimulus. Among these, Wood Polymer Composites (WPCs) change their shape in reaction to changes of moisture content, shrinking or swelling like natural wood until the equilibrium with the environment is reached. Such intrinsic material behavior can be particularly useful in the development of passive moisture airflow controllers that can modulate humidity and airflow in indoor environments to improve air quality. Precise measurement of the time-based stimulus induced shape-change response of these composites is critical to assess the responsiveness, velocity of reaction and overall deformation of the designed 4DP composite mechanisms. Up until now, Digital Image Correlation (DIC) techniques have been widely used for such purpose. However, DIC methods require expensive equipment and costly commercial software. This paper presents a Low-Cost Depth-Camera (LCDC) method that uses a free custom algorithm that returns a 3D coloured displacement map with the corresponding meshes of the acquired object. The LCDC method does not require specialized equipment and allows for an overall understanding of the time-dependent deformation of 4DP actuators, this method also facilitates the comparison between composites with different properties under the same external conditions. This new LCDC method has the potential to further 4DP research by providing an open-source, accessible and reliable tool to assess 3D displacement measurements.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3