Identifying and predicting climate change impact on vector-borne disease using machine learning: Case study of Plasmodium falciparum from Africa

Author:

Singh Priyanka,Saran Sameer

Abstract

Abstract. Vector-borne diseases pose a significant threat to human health, particularly in regions vulnerable to climate change. Among these diseases, malaria, caused by the parasite Plasmodium falciparum and transmitted through the Anopheles mosquito, remains a major global health concern, particularly in sub-Saharan Africa. This study explores the use of machine learning techniques to identify and predict the impact of climate change on the transmission dynamics of P. falciparum malaria in Africa.The research utilizes a combination of climate data, epidemiological records, and machine learning algorithms to analyze historical patterns and project future trends in malaria transmission. Key climate variables such as temperature, precipitation, humidity, and vegetation cover are integrated into predictive models to assess their influence on the abundance and distribution of mosquito vectors and the parasite's lifecycle. Through the application of machine learning models such as Maximum Entropy, this study aims to uncover complex relationships between climatic factors and malaria transmission dynamics. By training these models on historical data, they can accurately predict future scenarios under various climate change scenarios. The findings of this research will provide valuable insights into the potential impact of climate change on the spatial and temporal distribution of P. falciparum malaria in Africa. Such insights are crucial for designing targeted interventions and adaptation strategies to mitigate the anticipated rise in malaria cases and associated morbidity and mortality in the region. Moreover, the methodology developed in this study can serve as a framework for assessing and addressing the impact of climate change on other vector-borne diseases globally.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3