A STATISTICAL ANALYSIS FOR THE ASSESSMENT OF CLOSE-RANGE PHOTOGRAMMETRY GEOMETRICAL FEATURES

Author:

di Filippo A.,Antinozzi S.ORCID,Dell’Amico A.,Sanseverino A.

Abstract

Abstract. An examination of the traceability and dependability of the virtualisation properties is prompted by the widespread use of three-dimensional models. The challenge of obtaining accuracy indicators directly from the photogrammetric method when a reference model is missing is widely acknowledged. In this study, a robust method based on a statistical analysis of the uncertainty associated with Tie Points (TPs) is presented to provide a strict framework for the informed processing of photogrammetric survey data. In the phases of Structure estimation, Structure optimisation, and Dense Cloud generation, the key steps and variables affecting data processing are described. The workflow is then applied to a specific bronze museum finding smaller than 20 cm in size. All tie points that overcome the filtering phase are included in the procedure and for their coordinates the covariance matrix is examined. The error ellipsoid is calculated and the distribution of the lengths of the major semi-axes is analysed to calculate an appropriate tolerance interval which can be used as an indicator of the accuracy of the entire photogrammetric process. Indeed, using the tolerance intervals tool allows for the derivation of a representative indicator that can be compared with the outcomes of other photogrammetric processes while overcoming the ambiguity of statistical indicators that are not representative in the case of a non-normal distribution.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DOCUMENTATION OF CULTURAL HERITAGE THROUGH THE FUSION OF GEOMATIC TECHNIQUES. CASE STUDY OF THE CLOISTER OF "SANTO DOMINGO" (JAÉN, SPAIN);The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3