Accuracy Assessment of UAV LiDAR Compared to Traditional Total Station for Geospatial Data Collection in Land Surveying Contexts

Author:

Tamimi Rami,Toth CharlesORCID

Abstract

Abstract. Accurate surveying of vegetated areas presents significant challenges due to obstructions that obscure visibility and compromise the precision of measurements. This paper introduces a methodology employing the DJI Zenmuse L2 Light Detection and Ranging (LiDAR) sensor, which is mounted on a Matrice 350 RTK drone. The DJI Zenmuse L2 sensor excels at capturing detailed terrain data under heavy foliage, capable of collecting 1.2 million points per second and offering five returns, thus enhancing the sensor's ability to detect multiple surface responses from a single laser pulse. In a case study conducted near a creek heavily obscured by tree coverage, traditional aerial imaging techniques are found insufficient for capturing critical topographic features, such as the creek banks. Employing LiDAR, the study aims to map these obscured features effectively. The collected data is processed using DJI Terra software, which supports the accurate projection and analysis of the LiDAR data. To validate the accuracy of the data collected from the LiDAR sensor, traditional survey methods are deployed to ground truth the data and provide an accuracy assessment. Ground control points (GCPs) are established using a GNSS receiver to provide geodetic coordinates, which then assist in setting up a total station. This total station measures vertical and horizontal angles, as well as the slope distance from the instrument to positions underneath the tree coverage on the ground. These measurements serve as checkpoints to validate the accuracy of the LiDAR data, thus ensuring the reliability of the survey. This paper discusses the potential of integrating LiDAR data with traditional surveying data, which is expected to enhance the ability of surveyors to map environmental features efficiently and accurately in complex and vegetated terrains. Through detailed procedural descriptions and expected outcomes, the study aims to provide valuable insights into the strategic application of geospatial technologies to overcome common surveying challenges.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3