Multitemporal Structure-from-Motion: A Flexible Tool to Cope with Aerial Blocks in Changing Mountain Environment

Author:

Genzano NicolaORCID,Fugazza DavideORCID,Eskandari RasoulORCID,Scaioni MarcoORCID

Abstract

Abstract. The application of Structure-from-Motion (SfM) and Multi-View-Stereo matching with aerial images can be successfully used for deriving dense point clouds to analyse changes in the mountain environment, which is characterized by changes due to the action of natural process. The comparison of multiple datasets requires to setup a stable reference system, task that is generally implemented by means of ground control points (GCPs). On the other hand, their positioning may be sometimes difficult in mountains. To cope with this drawback an approach termed as Multitemporal SfM (MSfM) is presented: multiple blocks are oriented together within a unique SfM project, where GCPs are used in only one epoch for establishing the absolute datum. Accurate coregistration between different epochs depends on the automatic extraction of tie points in stable areas. To verify the application of MSfM in real cases, this paper presents three case studies where different types of photogrammetric data are adopted, including images from drones and manned aircrafts. Applications to glacier and mountain river erosion are entailed.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3