SPATIOTEMPORAL RECOVERY OF HIMAWARI-8 HOURLY AEROSOL OPTICAL DEPTH PRODUCTS VIA THE NESTED BAYESIAN MAXIMUM ENTROPY METHOD

Author:

Xia X.,Zhu Z.,Zhang T.,Wei G.,Ji Y.

Abstract

Abstract. Satellite-derived aerosol optical depth (AOD) is an indispensable parameter when conducting studies related to atmospheric environment, climate change, and biogeochemical cycle. However, current satellite-derived AOD products are limited in related applications due to the large proportion of missing data, and the existed methods mainly concentrate on recovering AOD from polar-orbit satellite sensors. In order to solve these issues and take full use of the preponderance of geostationary satellite sensors in high frequency observation, we propose a spatiotemporal AOD recovery framework integrating multi-time scale AOD products based on the nested Bayesian maximum entropy methodology (NBME), aimed to obtain satellite-derived AOD datasets with low data missing and high accuracy. The experiment results show that the spatial coverage of AOD datasets increases from 20.5% to 70.0%, and the R2 and RMSE of the recovered AOD against ground-based AERONET AOD are approximately 0.62 and 0.19, respectively. Moreover, the further simulated experiments indicate that the proposed method also performs better relatively when comparing with other popular recovery methods. Therefore, the proposed NBME recovery method can obtain a more convincing product both in applicable accuracy and visual quality.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3