A NEURAL NETWORK REGRESSION MODEL FOR ESTIMATING MAXIMUM DAILY AIR TEMPERATURE USING LANDSAT-8 DATA

Author:

Nascetti A.,Monterisi C.,Iurilli F.,Sonnessa A.

Abstract

Abstract. Urban Heat Islands (UHI) phenomenon is a pressing problem for highly industrialized areas with serious risks for public health. Weather stations guarantee long-term accurate observations of weather parameters, such Air Temperature (AT), but lack appropriate spatial coverage. Numerous studies have argued that satellite Land Surface Temperature (LST) is a relevant parameter for estimating AT maps, exploring both linear regression and Machine Learning algorithms. This study proposes a Neural Network (NN) regression model for estimating the maximum AT from Landsat-8 data. The approach has been tested in a variegated morphological region (Puglia, Italy) using a large stack of data acquired from 2018 to 2020. The algorithm uses the median values of LST and Normalized Difference Vegetation Index (NDVI) computed using different buffer radius around the location of each reference weather station (250 m, 1000 m, and 2000 m) to train the NN model with a K-fold cross-validation strategy. The reference dataset was split into three sets using a stratified sampling approach considering the different station categories: rural, High- and Low-density Urban areas respectively. The algorithm was tested with different learning rates (LR) (0.001 and 0.005). The results show that our NN model accuracy improves with the increase of the buffer radius, minimizing the difference in terms of R^2 between training and evaluation data, with an overall accuracy consistently higher than 0.84. Future research could investigate more input variables in the NN model such as morphology or climate variables and test the algorithm on larger areas.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3