COMPARISON OF MACHINE LEARNING CLASSIFIERS FOR MULTITEMPORAL AND MULTISENSOR MAPPING OF URBAN LULC FEATURES

Author:

Ouma Y.,Nkwae B.,Moalafhi D.,Odirile P.,Parida B.,Anderson G.,Qi J.ORCID

Abstract

Abstract. This study compares four machine-learning algorithms comprising of Classification And Regression Trees (CART), Random Forest (RF), Gradient Tree Boosting (GTB) and Support Vector Machine (SVM) for the classification of urban land-use and land-cover (LULC) features. Using multitemporal and multisensor Landsat data from 1984-2020 at 5-year intervals for the Greater Gaborone Planning Area (GGPA) in Botswana, the aim of the study is to determine the performance of the classifiers in the extraction of different urban LULC features as built-up, bare-soil, water, grass, shrubs and forest. The results show that for mapping built-up areas, RF and SVM presented the best results with overall accuracy of 85%. Bare soil is best mapped using RF and CART with accuracy of up to 98%, while SVM and GTB were most suitable for mapping water bodies. The suitable classifiers for mapping the vegetation classes were RF for grass (94.5%), SVM for shrubland (81.5%) and GTB for forest (84.3%). In terms of class specific accuracy, RF achieved the highest performance with average overall accuracy (OA) of 95.9%, SVM (95.8%), GTB (95.6%) and CART (95.1%). The same performance pattern was observed from the F1-score, True Positive Rate (TPR), False Positive Rate (FPR) and Area under ROC curve (AUC) metrices for the class classification accuracies. The overall accuracy for the eight-epoch years were RF (87.8%), SVM (87.5%), GTB (86.4%) and CART (85.3%). To improve on the urban LULC mapping, the study proposes the post-classification feature fusion of the best classifier results.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3