MULTI-SPECTRAL EDGE DETECTION FOR ENHANCED EXTRACTION AND CLASSIFICATION OF HOMOGENEOUS REGIONS IN REMOTELY SENSED IMAGES

Author:

Braitbart M.,Almog O.,Shoshany M.

Abstract

Abstract. Mediterranean environments are characterized by high spatial and temporal heterogeneity due to their climatological, lithological, soil and vegetation geo-diversity and their high population density which cause growing land-use transformations at the rural-urban fringe. Remote sensing mapping and monitoring land cover in these environments under such conditions is a challenging task. Instead of the common per pixel approach we suggest combining application of an object-oriented classification based on image objects separation through edge detection with unsupervised classification. The main elements of our methodology are: (1) separating image areas into vegetation/ non-vegetation regions utilizing NDVI threshold; (2) calculation of the spatial variance at different bands; (3) image objects extraction through enhancement of the differences between edge pixels and regions of homogeneity; (4) per-object classification for the homogenous areas; (5) overlaying large unclassified image areas by the results of ISODATA (Iterative Self-Organizing Data Analysis) unsupervised classification. Our methodology was applied on multi-spectral images acquired by the VENμS remote sensing system. The study area consists of a typical rural area in semi-arid climate regions undergoing increasing urbanization. Six test areas were selected representing different spatial combinations of natural/ planted forests, agriculture and built-up land-use/ land cover types. While bare fields were poorly classified, areas of low vegetation cover were classified with producer/user accuracies below 60%, built-up areas and roads, cultivated areas, shrublands and bata (dwarf-shrubs) and rocky areas gained good producer/ user classification accuracies.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3