TOWARDS BETTER COASTAL MAPPING USING FUSION OF HIGH TEMPORAL SENTINEL-2 AND PLANETSCOPE-2 IMAGERIES: 12 BANDS AT 3 M THROUGH NEURAL NETWORK MODELLING

Author:

Collin A.,James D.,Feunteun E.

Abstract

Abstract. Coastal interfaces are subject to an unprecedented rate of risks, gathering waves and rainfalls’ hazards, human assets’ densification, sea-level rise and precipitation intensification. Their sound management requires iterative observation at the highest possible spatial resolution. Sentinel-2 (S-2), provided with 13 spectral bands, datasets leverage high temporal resolution (one week) but spatial resolution (from 60 to 10 m) often remains too coarse to finely classify and monitor the coastal patches. PlanetScope-2 (PS-2) imagery benefits from very high temporal resolution (< one week) and high spatial resolution (3 m) for its blue-green-red-near-infrared dataset.This research paper proposes to, first, downscale 12 S-2 bands (cirrus S10 being evicted) by using neural network (NN) regressions built on the 4 PS-2 bands following two methods, and second, evaluate the NN classification performance of the 12-band datasets at 3 m for mapping 8 common coastal classes on a representative site (Brittany, France). Straightforward and stepwise downscaling procedures, respectively based on 12 and 22 NN regressions, generated very good performances (R2test=0.92 ± 0.02 and 0.95 ± 0.01, respectively). The 3-m NN classifications were considerably improved by the number of spectral bands (overall accuracy, OA, of the 4 bands: 48.12%) but also the precision of the downscaling (OA of the straightforward and stepwise downscaling: 75.25% and 93.57%, respectively). For the best classification, examination of the contribution of the individual bands revealed that S5, S7, S1, S9, S6 and S8A were meaningful (62.42, 55.02, 50.82, 46.4, 45.1, 31.02%, respectively), contrary to S12, S11 and S12 (12.47, 0 and 0%, respectively).

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SUPERDOVE-MODELLED BATHYMETRY USING NEURAL NETWORKS ALONG A TURBIDITY GRADIENT: BREHAT, SAINT-BARTHELEMY AND TETIAROA ISLANDS;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3