EXTRACTING RELEVANCE FROM SAR TEMPORAL PROFILES ON A GLACIER AND AN ALPINE WATERSHED BY A DEEP AUTOENCODER

Author:

Charrier L.ORCID,di Martino T.,Colin Koeniguer E.,Weissgerber F.,Plyer A.

Abstract

Abstract. This paper proposes to use methods for compressing the temporal profiles of Sentinel-1 images, in order to be able to evaluate and analyze the richness of the temporal dynamics, both on a glacier and on a watershed. We propose to use unsupervised deep learning to auto-encode the temporal information in 3 dimensions, allowing to use the three descriptors as three RGB components to produce a colored composition synthesizing the information. We compare this Convolutional AutoEncoder (CAE) approach with a dimensionality reduction based on a Principal Component Analysis (PCA) of the temporal profiles. The two methods, CAE and PCA, are applied to a time series over the Kyagar Glacier before and after a surge event, and on an alpine watershed to compare the differences in dynamic evolution associated with different terrain classes with and without snow. On the one hand, on the glacier, the stacks of 10 images used are too short for CAE to extract more than two really significant axes. On the other hand, with longer profiles available over the alpine watershed, the CAE is interesting to improve the clustering results obtained from the decomposition.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3