LARGE-SCALE MAPPING OF FLOOD USING SENTINEL-1 RADAR REMOTE SENSING

Author:

Haghighi M. H.ORCID

Abstract

Abstract. Sentinel-1 Synthetic Aperture Radar (SAR), with its extensive coverage and regular data acquisition all over the globe, has become one of the most valuable assets for flood monitoring in recent years. However, the strong influence of incidence angle on backscatter measurement of Sentinel-1 data makes it challenging to mosaic Sentinel-1 tracks for systematic flood mapping over large areas. This study uses a cosine squared normalization of Sentinel-1 data based on Lambert´s law for optics to homogenize SAR data from different tracks. Then, it combines normalized data from ascending and descending passes forms 12-day mosaics covering Bangladesh from January 2017 to December 2021. Afterward, it estimates flood evolution by segmentation of the country-wide mosaics of data and calculates a flood frequency map. The flood frequency map, along with the population information, is then used to estimate the flood risk to the Bangladesh population. The results show that normalization can reduce inconsistencies between different tracks of Sentinel-1 data. Furthermore, it shows the potential of Sentinel-1 data for systematic flood mapping at large scales. Such analysis can help implement flood management measures on a national scale to reduce the flood risk.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3