PERFORMANCE ANALYSIS OF SEMANTIC REFRESH INDOOR NAVIGATION FOR SMARTPHONE’S SENSORS USING INS/VINS INTEGRATION SCHEME

Author:

Lin C.-X.,Zeng J.-C.,Hung M.-C.,Tsai M.-L.,Chiang K.-W.

Abstract

Abstract. Positioning and Orientation System (POS), which integrates Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS), is widely used to accomplish outdoor navigation missions for land vehicles. However, the positioning accuracy would become worse in GNSS-hostile environments (Chiang et al., 2013), which is quite challenging to accomplish indoor navigation environments. Nevertheless, smartphones are contained many embedded sensors, including GNSS, IMU, camera, which have the potential to be an ideal personal navigation device. In this research, we mainly propose an integrated scheme of INS/VINS/object detection refresh (ODR) for indoor challenging environments. The goal is to achieve indoor navigation for vehicular applications only using smartphones. The algorithm is developed based on the smartphone. By the conventional inertial navigation system, which is integrated with two designed processes to further improve the performance. First is assistance from the visual-inertial navigation system (VINS). The long-term drift caused by the INS could be decreased effectively, and complete the extended Kalman filter (EKF) composition. The second is to apply neural network, YOLO-v3 (Redmon et al.,2018), to detect objects and provide the object's describer information to refresh the proper position. Therefore, the proposed method uses visual estimation and recognition methods to assist the smartphone platform to obtain a more accurate solution.Finally, we use the navigation-grade IMU as the reference system for accuracy verification. The accuracy comparisons of the three integration solutions are analysed reasonably. The position accuracy is reasonable. Compared with the original smartphone INS integration method, the proposed integration scheme improves the accuracy from the horizontal direction by 78.5%.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3