IMPACT OF DEEP LEARNING-BASED SUPER-RESOLUTION ON BUILDING FOOTPRINT EXTRACTION

Author:

He H.,Gao K.,Tan W.,Wang L.,Fatholahi S. N.,Chen N.,Chapman M. A.,Li J.

Abstract

Abstract. Automated building footprints extraction from High Spatial Resolution (HSR) remote sensing images plays important roles in urban planning and management, and hazard and disease control. However, HSR images are not always available in practice. In these cases, super-resolution, especially deep learning (DL)-based methods, can provide higher spatial resolution images given lower resolution images. In a variety of remote sensing applications, DL based super-resolution methods are widely used. However, there are few studies focusing on the impact of DL-based super-resolution on building footprint extraction. As such, we present an exploration of this topic. Specifically, we first super-resolve the Massachusetts Building Dataset using bicubic interpolation, a pre-trained Super-Resolution CNN (SRCNN), a pre-trained Residual Channel Attention Network (RCAN), a pre-trained Residual Feature Aggregation Network (RFANet). Then, using the dataset under its original resolution, as well as the four different super-resolutions of the dataset, we employ the High-Resolution Network (HRNet) v2 to extract building footprints. Our experiments show that super-resolving either training or test datasets using the latest high-performance DL-based super-resolution method can improve the accuracy of building footprints extraction. Although SRCNN based building footprint extraction gives the highest Overall Accuracy, Intersection of Union and F1 score, we suggest using the latest super-resolution method to process images before building footprint extraction due to the fixed scale ratio of pre-trained SRCNN and low speed of convergence in training.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3