COMPARING ACCURACY OF ULTRA-DENSE LASER SCANNER AND PHOTOGRAMMETRY POINT CLOUDS

Author:

Pirotti F.ORCID,Piragnolo M.,Vettore A.,Guarnieri A.ORCID

Abstract

Abstract. Massive point clouds have now become a common product from surveys using passive (photogrammetry) or active (laser scanning) technologies. A common question is what is the difference in terms of accuracy and precision of different technologies and processing options. In this work four ultra-dense point-clouds (PCs) from drone surveys are compared. Two PCs were created from imagery using a photogrammetric workflow, with and without ground control points. The laser scanning PCs were created with two drone flights with Riegl MiniVUX-3 lidar sensor, resulting in a point cloud with ~300 million points, and Riegl VUX-120 lidar sensor, leading to a point cloud with ~1 billion points. Relative differences between pairs from permutations of the four PCs are analysed calculating point-to-point distances over nearest neighbours. Eleven clipped PC subsets are used for this task. Ground control points (GCPs) are also used to assess residuals in the two photogrammetric point clouds in order to quantify the improvement from using GCPs vs not using GCPs when processing the images.Results related to comparing the two photogrammetric point clouds with and without GCPs show an improvement of average absolute position error from 0.12 m to 0.05 m and RMSE from 0.03 m to 0.01 m. Point-to-point distances over the PC pairs show that the closest point clouds are the two lidar clouds, with mean absolute distance (MAD), median absolute distance (MdAD) and standard deviation of distances (RMSE) respectively of 0.031 m, 0.025 m, 0.019 m; largest difference is between photogrammetric PC with GCPs, with 0.208 m, 0.206 m and 0.116 m, with the Z component providing most of the difference. Photogrammetry without GCP was more consistent with the lidar point clouds, with MAD of 0.064 m, MdAD of 0.048 m and RMSE value of 0.114 m.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Level of As-Is Detail Concept for Digital Twins of Roads—A Case Study;Lecture Notes in Geoinformation and Cartography;2024

2. AUTOMATIC COARSE CO-REGISTRATION OF POINT CLOUDS FROM DIVERSE SCAN GEOMETRIES: A TEST OF DETECTORS AND DESCRIPTORS;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-05

3. How important is UAVs RTK accuracy for the identification of certain vine diseases?;2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2022-11-03

4. Information Technologies for Real-Time Mapping of Human Well-Being Indicators in an Urban Historical Garden;Future Internet;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3