EXTRACTION OF ELEMENT AT RISK FOR LANDSLIDES USING REMOTE SENSING METHOD

Author:

Hasan R. C.ORCID,Rosle Q. A.,Asmadi M. A.,Mohd Kamal N. A.

Abstract

Abstract. One of the most critical steps towards landslide risk analysis is the determination of element at risk. Element at risk describes any object that could potentially fail or exposed to hazards during disaster. Without quantification of element at risk information, it is difficult to estimate risk. This paper aims at developing a methodology to extract and quantity element at risk from airborne Light Detection and Ranging (LiDAR) data. The element at risk map produced was then used to construct exposure map which describes the amount of hazard for each element at risk involved. This study presented two study sites at Kundasang and Kota Kinabalu in Sabah with both areas have experienced major earthquake in June 2015. The results show that not all the features can be automatically extracted from the LiDAR data. For example, automatic extraction process could be done for building footprint and building heights, but for others such as roads and vegetation areas, a manual digitization is still needed because of the difficulties to differentiate between these features. In addition to this, there were also difficulties in identifying attribute for each feature, for example to separate between federal roads with state and unpaved roads. Therefore, for large area hazard and risk mapping, the authors suggested that an automatic process should be investigated in the future to reduce time and cost to extract important features from LiDAR data.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3