Can the boundary profiles at 26° N be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?

Author:

Polo Irene,Haines Keith,Robson JonORCID,Thomas Christopher

Abstract

Abstract. The temporal variability of the Atlantic Meridional Overturning Circulation (AMOC) is driven both by direct wind stresses and by the buoyancy-driven formation of North Atlantic Deep Water over the Labrador Sea and Nordic Seas. In many models, low-frequency density variability down the western boundary of the Atlantic basin is linked to changes in the buoyancy forcing over the Atlantic subpolar gyre (SPG) region, and this is found to explain part of the geostrophic AMOC variability at 26∘ N. In this study, using different experiments with an ocean general circulation model (OGCM), we develop statistical methods to identify characteristic vertical density profiles at 26∘ N at the western and eastern boundaries, which relate to the buoyancy-forced AMOC. We show that density anomalies due to anomalous buoyancy forcing over the SPG propagate equatorward along the western Atlantic boundary (through 26∘ N), eastward along the Equator, and then poleward up the eastern Atlantic boundary. The timing of the density anomalies appearing at the western and eastern boundaries at 26∘ N reveals ∼ 2–3-year lags between boundaries along deeper levels (2600–3000 m). Record lengths of more than 26 years are required at the western boundary (WB) to allow the buoyancy-forced signals to appear as the dominant empirical orthogonal function (EOF) mode. Results suggest that the depth structure of the signals and the lagged covariances between the boundaries at 26∘ N may both provide useful information for detecting propagating signals of high-latitude origin in more complex models and potentially in the observational RAPID (Rapid Climate Change programme) array. However, time filtering may be needed, together with the continuation of the RAPID programme, in order to extend the time period.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3