Little evidence for land-use filters on intraspecific trait variation in three arthropod groups

Author:

Wehner KatjaORCID,Brandt Matthias,Hilpert Andrea,Simons Nadja K.​​​​​​​,Blüthgen Nico

Abstract

Abstract. Declines in species richness and abundance of insects over the last decades are often driven by anthropogenic land use and can have severe consequences for ecosystem functioning. Many studies investigated the effects of land-use intensification on the distribution of phenotypic traits across species at the community level, often with mixed results. However, biotic and abiotic environmental filters and potential selection act on individuals within each species, i.e., at the species' population level, and thus drive the extent of intraspecific phenotypic variation. Here, we compare the morphological trait variation within selected species of dung beetles, bees and grasshoppers and link this variation to land-use intensity in forests and grasslands. Selected traits included absolute body size measures and relative leg, wing or eye size, or shape and are often interpreted as “functional traits” in the context of specific ecological responses or effects. We predicted that trait variability among individuals of arthropod species is reduced in intensively used ecosystems (with pronounced environmental filtering) compared to low-intensity ones, particularly for arthropod species that were more abundant in intensively used sites (“land-use winners” compared to “losers”). In general, only few effects of land-use intensity on trait variation were found showing a decreasing variation with increasing land-use intensity in forests but an increasing variation in grasslands. Although many studies confirmed strong land-use impacts on species composition, diversity and trait distribution, including evidence from the same land-use gradients, we were not able to confirm consistent effects at the intraspecific level. However, the choice of which traits are included in analyses and the linkage between phenotypic variation and genetic variability can strongly influence the conclusions drawn on ecological processes. Therefore, we suggest extending the use of intraspecific trait variation on other, more specific response or effect traits and a broader range of species in future studies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3