Potential for bias in effective climate sensitivity from state-dependent energetic imbalance
-
Published:2022-12-19
Issue:4
Volume:13
Page:1715-1736
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Sanderson Benjamin M.,Rugenstein Maria
Abstract
Abstract. To estimate equilibrium climate sensitivity from a simulation where a step change in carbon dioxide concentrations is imposed, a common approach is to linearly extrapolate temperatures as a function of top-of-atmosphere energetic imbalance to estimate the equilibrium state (“effective climate sensitivity”). In this study, we find that this estimate may be biased in some models due to state-dependent energetic leaks. Using an ensemble of multi-millennial simulations of climate model response to a constant forcing, we estimate equilibrium climate sensitivity through Bayesian calibration of simple climate models which allow for responses from subdecadal to multi-millennial timescales. Results suggest potential biases in effective climate sensitivity in the case of particular models where radiative tendencies imply energetic imbalances which differ between pre-industrial and quadrupled CO2 states, whereas for other models even multi-thousand-year experiments are insufficient to predict the equilibrium state. These biases draw into question the utility of effective climate sensitivity as a metric of warming response to greenhouse gases and underline the requirement for operational climate sensitivity experiments on millennial timescales to better understand committed warming following a stabilization of greenhouse gases.
Funder
H2020 European Research Council
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference59 articles.
1. Andrews, T., Gregory, J. M., Webb, M. J., and Taylor, K. E.: Forcing, feedbacks
and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models,
Geophys. Res. Lett., 39, L09712, https://doi.org/10.1029/2012GL051607, 2012. a 2. Andrews, T., Gregory, J. M., and Webb, M. J.: The dependence of radiative
forcing and feedback on evolving patterns of surface temperature change in
climate models, J. Climate, 28, 1630–1648, 2015. a 3. Andrews, T., Gregory, J. M., Paynter, D., Silvers, L. G., Zhou, C., Mauritsen,
T., Webb, M. J., Armour, K. C., Forster, P. M., and Titchner, H.: Accounting
for Changing Temperature Patterns Increases Historical Estimates of Climate
Sensitivity, Geophys. Res. Lett., 45, 8490–8499,
https://doi.org/10.1029/2018GL078887, 2018. a 4. Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-Varying Climate Sensitivity
from Regional Feedbacks, J. Climate, 26, 4518–4534,
https://doi.org/10.1175/JCLI-D-12-00544.1, 2013. a 5. Bastiaansen, R., Dijkstra, H. A., and Heydt, A. S. v. d.: Projections of the
Transient State-Dependency of Climate Feedbacks, Geophys. Res. Lett., 48, e2021GL094670, https://doi.org/10.1029/2021GL094670, 2021. a
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|