Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering

Author:

Wang Jun,Moore John C.,Zhao Liyun,Yue ChaoORCID,Di Zhenhua

Abstract

Abstract. We use four Earth system models (ESMs) to simulate climate under the modest greenhouse emissions RCP4.5 (Representative Concentration Pathway), the “business-as-usual” RCP8.5 and the stratospheric aerosol injection G4 geoengineering scenarios. These drive a 10 km resolution dynamically downscaled model (Weather Research and Forecasting, WRF) and a statistically bias-corrected (Inter-Sectoral Impact Model Intercomparison Project, ISIMIP) and downscaled simulation in a 450×330 km domain containing the Beijing Province, ranging from 2000 m elevation to sea level. The 1980s simulations of surface temperatures, humidities and wind speeds using statistical bias correction make for a better estimate of mean climate determined by ERA5 reanalysis data than does the WRF simulation. However correcting the WRF output with quantile delta mapping bias correction removes the offsets in mean state and results in WRF better reproducing observations over 2007–2017 than ISIMIP bias correction. The WRF simulations consistently show 0.5 ∘C higher mean annual temperatures than from ISIMIP due both to the better resolved city centres and also to warmer winter temperatures. In the 2060s WRF produces consistently larger spatial ranges of surface temperatures, humidities and wind speeds than ISIMIP downscaling across the Beijing Province for all three future scenarios. The WRF and ISIMIP methods produce very similar spatial patterns of temperature with G4 and are always cooler than RCP4.5 and RCP8.5, by a slightly larger amount with ISIMIP than WRF. Humidity scenario differences vary greatly between ESMs, and hence ISIMIP downscaling, while for WRF the results are far more consistent across ESMs and show only small changes between scenarios. Mean wind speeds show similarly small changes over the domain, although G4 is significantly windier under WRF than either RCP scenario.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3