Improving the prediction of the Madden–Julian Oscillation of the ECMWF model by post-processing
-
Published:2022-08-23
Issue:3
Volume:13
Page:1157-1165
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Silini RiccardoORCID, Lerch SebastianORCID, Mastrantonas NikolaosORCID, Kantz HolgerORCID, Barreiro Marcelo, Masoller CristinaORCID
Abstract
Abstract. The Madden–Julian Oscillation (MJO) is a major source of predictability on the sub-seasonal (10 to 90 d) timescale. An improved forecast of the MJO may have important socioeconomic impacts due to the influence of MJO on both tropical and extratropical weather extremes. Although in the last decades state-of-the-art climate models have proved their capability for forecasting the MJO exceeding the 5-week prediction skill, there is still room for improving the prediction. In this study we use multiple linear regression (MLR) and a machine learning (ML) algorithm as post-processing methods to improve the forecast of the model that currently holds the best MJO forecasting performance, the European Centre for Medium-Range Weather Forecasts (ECMWF) model. We find that both MLR and ML improve the MJO prediction and that ML outperforms MLR. The largest improvement is in the prediction of the MJO geographical location and intensity.
Funder
H2020 Marie Skłodowska-Curie Actions Vector Stiftung Institució Catalana de Recerca i Estudis Avançats Ministerio de Ciencia, Innovación y Universidades
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference53 articles.
1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, http://tensorflow.org/ (last access: 15 July 2022), 2015. a 2. Alvarez, M. S., Vera, C. S., and Kiladis, G. N.: MJO Modulating the Activity of the Leading Mode of Intraseasonal Variability in South America, Atmosphere, 8, 232, https://doi.org/10.3390/atmos8120232, 2017. a 3. Barrett, B. S., Densmore, C. R., Ray, P., and Sanabia, E. R.: Active and
weakening MJO events in the Maritime Continent, Clim. Dynam., 57, 157–172, https://doi.org/10.1007/s00382-021-05699-8, 2021. a 4. Bergman, J. W., Hendon, H. H., and Weickmann, K. M.: Intraseasonal Air–Sea
Interactions at the Onset of El Niño, J. Climate, 14, 1702–1719, 2001. a 5. Camargo, S. J., Wheeler, M. C., and Sobel, A. H.: Diagnosis of the MJO
Modulation of Tropical Cyclogenesis Using an Empirical Index, J. Atmos. Sci., 66, 3061–3074, https://doi.org/10.1175/2009JAS3101.1, 2009. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|