The water balance of two semi-arid shrubs on abandoned land in South-Eastern Spain after cold season rainfall

Author:

Archer N.,Hess T.,Quinton J.

Abstract

Abstract. The inland, mountainous marginal areas (land abandoned by farming and colonised by shrubs) of the Iberian Peninsular, Spain, generally receive a higher rainfall than the coastal areas (Lazaro and Rey, 1991) and may store water after cold season (autumn and winter) rainfall. By measuring runoff, change of soil water content and rainfall, this study tests the hypothesis that two shrubs on two sites on abandoned land do not use all the water available after cold season rainfall. One site was on an upper alluvial slope dominated by Anthyllis cytisoides and the other on a lower alluvial slope dominated by Retama sphaerocarpa. The root systems of A. cytisoides and R. sphaerocarpa penetrate to 3 m and 20 m, respectively. A. cytisoides senesces during the dry season and R. sphaerocarpa is evergreen. The water balance is dominated by high actual evapotranspiration (ET), which is limited by rainfall. Reference evapotranspiration was high; runoff was low and soil water storage occurred above 2 m depth. ET and water storage were highest under A. cytisoides shrubs. Runoff was lower on the ‘Anthyllis’ site. The spatial variability of soil water is high and the problems of its measurement are discussed. The quantity of rainfall infiltrated was greater under shrubs than grass-areas, suggesting that shrub roots facilitated preferential flow. The growing season of A. cytisoides began when water was available in the upper soil layers and senescence occurred when the upper soil layers dried to less than 4% water content. A. cytisoides, therefore, relies on water from these layers. The main growth of R. sphaerocarpa occurred when the upper soil layers were relatively dry, so that R. sphaerocarpa must extract water from deeper layers. Results suggest that A. cytisoides accumulates rainfall and runoff and directs water to lower layers for later use, while R. sphaerocarpa extracts water from deeper soil layers. By mid-summer both shrubs had extracted all the available water accumulated in the upper soil layers from cold season rainfall. Keywords: water balance, neutron probe, patchy vegetation, mosaic vegetation, Spain, semi arid, Anthyllis cytisoides, Retama sphaerocarpa

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3