Sustainability characteristics of drinking water supply in the Netherlands

Author:

van Engelenburg JolijnORCID,van Slobbe ErikORCID,Teuling Adriaan J.ORCID,Uijlenhoet RemkoORCID,Hellegers Petra

Abstract

Abstract. Developments such as climate change and a growing demand for drinking water threaten the sustainability of drinking water supply worldwide. To deal with this threat, adaptation of drinking water supply systems is imperative, not only on a global and national scale but particularly on a local scale. This investigation sought to establish characteristics that describe the sustainability of local drinking water supply. The hypothesis of this research was that sustainability characteristics depend on the context that is analysed, and therefore, a variety of cases must be analysed to reach a better understanding of the sustainability of drinking water supply in the Netherlands. Therefore, three divergent cases on drinking water supply in the Netherlands were analysed. One case related to a short-term development (2018 summer drought), and two concerned long-term phenomena (changes in water quality and growth in drinking water demand). We used an integrated systems approach, describing the local drinking water supply system in terms of hydrological, technical, and socio-economic characteristics that determine the sustainability of a local drinking water supply system. To gain a perspective on the case study findings that are broader than the Dutch context, the sustainability aspects identified were paired with global aspects concerning sustainable drinking water supply. This resulted in the following set of hydrological, technical, and socio-economic sustainability characteristics: (1) water quality, water resource availability, and impact of drinking water abstraction; (2) reliability and resilience of the technical system and energy use and environmental impact; (3) drinking water availability, water governance, and land and water use. Elaboration of these sustainability characteristics and criteria into a sustainability assessment can provide information on the challenges and trade-offs inherent in the sustainable development and management of a local drinking water supply system.

Publisher

Copernicus GmbH

Subject

Pollution,Water Science and Technology,Civil and Structural Engineering

Reference51 articles.

1. Alegre, H., Baptiste, J. M., Cabrera Jr., E., Cubillo, F., Duarte, P., Hirner, W., Merkel, W., and Pareno, R.: Performance Indicators for Water Supply Services, in: Manual of Best Practice, IWA Publishing, London, UK, 2006.

2. Baggelaar, P. K. and Geudens, P. J. J. G.: Prognoses en scenario's drinkwatergebruik in Nederland (Prognoses and scenarios for drinking water use in the Netherlands), ICASTAT, VEWIN, The Hague, the Netherlands, 2017.

3. Bauer, J. M. and Herder, P. M.: Designing Socio-Technical Systems. Philosophy of Technology and Engineering Sciences, North-Holland, Amsterdam, the Netherlands, 2009.

4. Binder, C. R., Hinkel, J., Bots, P. W. G., and Pahl-Wostl, C.: Comparison of frameworks for analyzing social-ecological systems, Ecol. Soc., 18, 26–45, 2013.

5. Carr, E. R., Wingard, P. M., Yorty, S. C., Thompson, M. C., Jensen, N. K., and Roberson, J.: Applying DPSIR to sustainable development, Int. J Sust. Dev. World, 14, 543–555, 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3