Abstract
Abstract. In the case of severe accident with loss of containment in a nuclear plant, radionuclides are released into the atmosphere in the form of both gases and aerosol particles (Baklanov and Sørensen, 2001). The analysis of radioactive aerosol scavenged by rain after the Chernobyl accident highlights certain differences between the modelling studies and the environmental measurements. Part of these discrepancies can probably be attributed to uncertainties in the efficiencies used to calculate aerosol particle collection by raindrops, particularly drops with a diameter larger than one millimetre. In order to address the issue of these uncertainties, an experimental study was performed to close the gaps still existing for this key microphysical parameter. In this paper, attention is first focused on the efficiency with which aerosol particles in the accumulation mode are collected by raindrops with a diameter of 2 mm. The collection efficiencies measured for aerosol particle in the sub-micron range are quantitatively consistent with previous theoretical model developed by Beard (1974) and thus highlight the major role of rear capture in the submicron range.
Reference40 articles.
1. Adrian, R. J.: Multi-point optical measurements of simultaneous vectors in unsteady flow–-a review, Int. J. Heat Fluid Fl., 7, 127–145, 1986.
2. Baklanov, A. and Sørensen, J. H.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth B, 26, 787–799, 2001.
3. Baron, P. A. and Willeke, K.: Aerosol Measurement, Principles, Techniques, and Applicaions (New York/Chichester/Weinheim/Brisbane/Singapore/Toronto), 2001.
4. Beard, K. V.: Experimental and numerical collision efficiencies for submicron particles scavenged by raindrops, J. Atmos. Sci., 31, 1595–1603, 1974.
5. Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33, 851–864, 1976.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献