Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia

Author:

Nogueira MiguelORCID,Albergel ClémentORCID,Boussetta Souhail,Johannsen FredericoORCID,Trigo Isabel F.ORCID,Ermida Sofia L.ORCID,Martins João P. A.ORCID,Dutra EmanuelORCID

Abstract

Abstract. Earth observations were used to evaluate the representation of land surface temperature (LST) and vegetation coverage over Iberia in two state-of-the-art land surface models (LSMs) – the European Centre for Medium-Range Weather Forecasts (ECMWF) Carbon-Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (CHTESSEL) and the Météo-France Interaction between Soil Biosphere and Atmosphere model (ISBA) within the SURface EXternalisée modeling platform (SURFEX-ISBA) for the 2004–2015 period. The results showed that the daily maximum LST simulated by CHTESSEL over Iberia was affected by a large cold bias during summer months when compared against the Satellite Application Facility on Land Surface Analysis (LSA-SAF), reaching magnitudes larger than 10 ∘C over wide portions of central and southwestern Iberia. This error was shown to be tightly linked to a misrepresentation of the vegetation cover.  In contrast, SURFEX simulations did not display such a cold bias. We show that this was due to the better representation of vegetation cover in SURFEX, which uses an updated land cover dataset (ECOCLIMAP-II) and an interactive vegetation evolution, representing seasonality. The representation of vegetation over Iberia in CHTESSEL was improved by combining information from the European Space Agency Climate Change Initiative (ESA-CCI) land cover dataset with the Copernicus Global Land Service (CGLS) leaf area index (LAI) and fraction of vegetation coverage (FCOVER). The proposed improvement in vegetation also included a clumping approach that introduces seasonality to the vegetation cover. The results showed significant added value, removing the daily maximum LST summer cold bias completely, without reducing the accuracy of the simulated LST, regardless of season or time of the day. The striking performance differences between SURFEX and CHTESSEL were fundamental to guiding the developments in CHTESSEL highlighting the importance of using different models. This work has important implications: first, it takes advantage of LST, a key variable in surface–atmosphere energy and water exchanges, which is closely related to satellite top-of-atmosphere observations, to improve the model's representation of land surface processes. Second, CHTESSEL is the land surface model employed by ECMWF in the production of their weather forecasts and reanalysis; hence systematic errors in land surface variables and fluxes are then propagated into those products. Indeed, we showed that the summer daily maximum LST cold bias over Iberia in CHTESSEL is present in the widely used ECMWF fifth-generation reanalysis (ERA5). Finally, our results provided hints about the interaction between vegetation land–atmosphere exchanges, highlighting the relevance of the vegetation cover and respective seasonality in representing land surface temperature in both CHTESSEL and SURFEX. As a whole, this work demonstrated the added value of using multiple earth observation products for constraining and improving weather and climate simulations.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3