The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
-
Published:2020-08-13
Issue:8
Volume:13
Page:3571-3605
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Meinshausen MalteORCID, Nicholls Zebedee R. J., Lewis Jared, Gidden Matthew J.ORCID, Vogel Elisabeth, Freund Mandy, Beyerle UrsORCID, Gessner ClaudiaORCID, Nauels AlexanderORCID, Bauer Nico, Canadell Josep G.ORCID, Daniel John S., John Andrew, Krummel Paul B.ORCID, Luderer GunnarORCID, Meinshausen Nicolai, Montzka Stephen A.ORCID, Rayner Peter J.ORCID, Reimann StefanORCID, Smith Steven J.ORCID, van den Berg MartenORCID, Velders Guus J. M.ORCID, Vollmer Martin K.ORCID, Wang Ray H. J.ORCID
Abstract
Abstract. Anthropogenic increases in atmospheric greenhouse gas
concentrations are the main driver of current and future climate change. The
integrated assessment community has quantified anthropogenic emissions for
the shared socio-economic pathway (SSP) scenarios, each of which represents
a different future socio-economic projection and political environment.
Here, we provide the greenhouse gas concentrations for these SSP scenarios
– using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We
extend historical, observationally based concentration data with SSP
concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range
from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5)
emission scenarios, respectively. We also provide the concentration
extensions beyond 2100 based on assumptions regarding the trajectories of fossil
fuels and land use change emissions, net negative emissions, and the
fraction of non-CO2 emissions. By 2150, CO2 concentrations in the
lowest emission scenario are approximately 350 ppm and approximately plateau
at that level until 2500, whereas the highest fossil-fuel-driven scenario
projects CO2 concentrations of 1737 ppm and reaches concentrations
beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total
radiative forcing contribution of all considered 43 long-lived greenhouse
gases increases from 66 % for the present day to roughly 68 % to 85 % by
the time of maximum forcing in the 21st century. For this estimation,
we updated simple radiative forcing parameterizations that reflect the Oslo
Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs
(SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced
and extend to lower 2100 radiative forcing and temperatures. Performing two
pairs of six-member historical ensembles with CESM1.2.2, we estimate the
effect on surface air temperatures of applying latitudinally and seasonally
resolved GHG concentrations. We find that the ensemble differences in the
March–April–May (MAM) season provide a regional warming in higher northern
latitudes of up to 0.4 K over the historical period, latitudinally averaged
of about 0.1 K, which we estimate to be comparable to the upper bound
(∼5 % level) of natural variability. In comparison to the
comparatively straight line of the last 2000 years, the greenhouse gas
concentrations since the onset of the industrial period and this studies'
projections over the next 100 to 500 years unequivocally depict a
“hockey-stick” upwards shape. The SSP concentration time series derived in
this study provide a harmonized set of input assumptions for long-term
climate science analysis; they also provide an indication of the wide set of
futures that societal developments and policy implementations can lead to –
ranging from multiple degrees of future warming on the one side to
approximately 1.5 ∘C warming on the other.
Funder
Australian Research Council
Publisher
Copernicus GmbH
Reference88 articles.
1. Beckley, B. D., Zelensky, N. P., Holmes, S. A., Lemoine, F. G., Ray, R. D.,
Mitchum, G. T., Desai, S. D., and Brown, S. T.: Assessment of the Jason-2
Extension to the TOPEX/Poseidon, Jason-1 Sea-Surface Height Time Series for
Global Mean Sea Level Monitoring, Mar. Geod., 33, 447–471, https://doi.org/10.1080/01490419.2010.491029, 2010. 2. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.:
Uncertainty estimates in regional and global observed temperature changes: A
new data set from 1850, J. Geophys. Res.-Atmos., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006. 3. Buizert, C., Martinerie, P., Petrenko, V. V., Severinghaus, J. P., Trudinger, C. M., Witrant, E., Rosen, J. L., Orsi, A. J., Rubino, M., Etheridge, D. M., Steele, L. P., Hogan, C., Laube, J. C., Sturges, W. T., Levchenko, V. A., Smith, A. M., Levin, I., Conway, T. J., Dlugokencky, E. J., Lang, P. M., Kawamura, K., Jenk, T. M., White, J. W. C., Sowers, T., Schwander, J., and Blunier, T.: Gas transport in firn: multiple-tracer characterisation and model intercomparison for NEEM, Northern Greenland, Atmos. Chem. Phys., 12, 4259–4277, https://doi.org/10.5194/acp-12-4259-2012, 2012. 4. Butchart, N. and Scaife, A. A.: Removal of chlorofluorocarbons by increased
mass exchange between the stratosphere and troposphere in a changing
climate, Nature, 410, 799–802, 2001. 5. Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017, 2017.
Cited by
703 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|