Graphics-processing-unit-accelerated ice flow solver for unstructured meshes using the Shallow-Shelf Approximation (FastIceFlo v1.0.1)

Author:

Sandip AnjaliORCID,Räss LudovicORCID,Morlighem MathieuORCID

Abstract

Abstract. Ice-sheet flow models capable of accurately projecting their future mass balance constitute tools to improve flood risk assessment and assist sea-level rise mitigation associated with enhanced ice discharge. Some processes that need to be captured, such as grounding-line migration, require high spatial resolution (under the kilometer scale). Conventional ice flow models mainly execute on central processing units (CPUs), which feature limited parallel processing capabilities and peak memory bandwidth. This may hinder model scalability and result in long run times, requiring significant computational resources. As an alternative, graphics processing units (GPUs) are ideally suited for high spatial resolution, as the calculations can be performed concurrently by thousands of threads, processing most of the computational domain simultaneously. In this study, we combine a GPU-based approach with the pseudo-transient (PT) method, an accelerated iterative and matrix-free solution strategy, and investigate its performance for finite elements and unstructured meshes with application to two-dimensional (2-D) models of real glaciers at a regional scale. For both the Jakobshavn and Pine Island glacier models, the number of nonlinear PT iterations required to converge a given number of vertices (N) scales in the order of 𝒪(N1.2) or better. We further compare the performance of the PT CUDA C implementation with a standard finite-element CPU-based implementation using the price-to-performance metric. The price of a single Tesla V100 GPU is 1.5 times that of two Intel Xeon Gold 6140 CPUs. We expect a minimum speedup of at least 1.5 times to justify the Tesla V100 GPU price to performance. Our developments result in a GPU-based implementation that achieves this goal with a speedup beyond 1.5 times. This study represents a first step toward leveraging GPU processing power, enabling more accurate polar ice discharge predictions. The insights gained will benefit efforts to diminish spatial resolution constraints at higher computing performance. The higher computing performance will allow for ensembles of ice-sheet flow simulations to be run at the continental scale and higher resolution, a previously challenging task. The advances will further enable the quantification of model sensitivity to changes in upcoming climate forcings. These findings will significantly benefit process-oriented sea-level-projection studies over the coming decades.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3