Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, <i>c</i>-C<sub>4</sub>F<sub>8</sub>O) in the atmosphere
-
Published:2019-03-20
Issue:6
Volume:19
Page:3481-3492
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Vollmer Martin K.ORCID, Bernard François, Mitrevski Blagoj, Steele L. Paul, Trudinger Cathy M.ORCID, Reimann StefanORCID, Langenfelds Ray L., Krummel Paul B.ORCID, Fraser Paul J., Etheridge David M.ORCID, Curran Mark A. J., Burkholder James B.
Abstract
Abstract. The first atmospheric observations of octafluorooxolane
(octafluorotetrahydrofuran, c-C4F8O), a persistent greenhouse gas, are
reported. In addition, a complementary laboratory study of its most likely atmospheric
loss processes, its infrared absorption spectrum, and global warming potential (GWP) are
reported. First atmospheric measurements of c-C4F8O are provided from the
Cape Grim Air Archive (41∘ S, Tasmania, Australia, 1978–present), supplemented
by two firn air samples from Antarctica, in situ measurements of ambient air at
Aspendale, Victoria (38∘ S), and a few archived air samples from the Northern
Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown
over the past decades and leveled at 74 ppq (parts per quadrillion, femtomole per mole
in dry air) by 2015–2018. The growth rate of c-C4F8O has decreased from a
maximum in 2004 of 4.0 to <0.25 ppq yr−1 in 2017 and 2018. Using a 12-box
atmospheric transport model, globally averaged yearly emissions and abundances of
c-C4F8O are calculated for 1951–2018. Emissions, which we speculate to
derive predominantly from usage of c-C4F8O as a solvent in the
semiconductor industry, peaked at 0.15 (±0.04, 2σ) kt yr−1 in 2004 and
have since declined to <0.015 kt yr−1 in 2017 and 2018. Cumulative emissions
over the full range of our record amount to 2.8 (2.4–3.3) kt, which correspond to 34 Mt
of CO2-equivalent emissions. Infrared and ultraviolet absorption spectra for
c-C4F8O as well as the reactive channel rate coefficient for the
O(1D) + c-C4F8O reaction were determined from laboratory
studies. On the basis of these experiments, a radiative efficiency of
0.430 W m−2 ppb−1 (parts per billion, nanomol mol−1) was determined,
which is one of the largest found for synthetic greenhouse gases. The global annually
averaged atmospheric lifetime, including mesospheric loss, is estimated to be
>3000 years. GWPs of 8975, 12 000, and 16 000 are estimated for the 20-, 100-, and
500-year time horizons, respectively.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. 3M Company: 3M Material Safety Data Sheet 3M(TM) PFG-3480 Specialty Gas,
https://userweb.jlab.org/~brads/c4f8o/c4f8o-3M-msds.pdf (last
access:15 May 2018), 2007. a 2. Acconcia, T. V., Agócs, A. G., Barile, F., Barnaföldi, G. G.,
Bellwied, R., Bencédi, G., Bencze, G., Berényi, D.,
Boldizsár, L., Chattopadhyay, S., Chinellato, D. D., Cindolo, F.,
Cossyleon, K., Das, D., Das, K., Das-Bose, L., Dash, A. K., D'Ambrosio, S.,
De Cataldo, G., De Pasquale, S., Di Bari, D., Di Mauro, A., Futó, E.,
Garcia-Solis, E., Hamar, G., Harton, A., Iannone, G., Jimenez, R. T., Kim,
D. W., Kim, J. S., Knospe, A., Kovács, L., Lévai, P., Markert,
C., Martinengo, P., Molnár, L., Nappi, E., Oláh, L., Paić,
G., Pastore, C., Patimo, G., Patino, M. E., Peskov, V., Pinsky, L., Piuz, F.,
Pochybová, S., Sgura, I., Sinha, T., Song, J., Takahashi, J., Timmins,
A., Van Beelen, J. B., Varga, D., Volpe, G., Weber, M., Xaplanteris, L., Yi,
J., and Yoo, I.-K.: VHMPID RICH prototype using pressurized C4F8O
radiator gas and VUV photon detector, Nucl. Instrum. Meth. A, 767,
50–60, https://doi.org/10.1016/j.nima.2014.08.005, 2014. a 3. Artuso, M., Boulahouache, C., Blusk, S., Butt, J., Dorjkhaidav, O., Menaa,
N.,
Moutain, R., Muramatsu, H., Nandakumar, R., Randrianarivony, K., Sia, R.,
Skwarnicki, T., Stone, S., Wang, J. C., and Zhang, K.: Performance of a
C4F8O gas radiator ring imaging Cherenkov detector using
multi-anode photomultiplier tubes, Nucl. Instrum. Meth. A, 558, 373–387,
https://doi.org/10.1016/j.nima.2005.11.221, 2006. a 4. Baasandorj, M., Fleming, E. L., Jackman, C. H., and Burkholder, J. B.:
O(1D) kinetic study of key ozone depleting substances and greenhouse
gases, J. Phys. Chem. A, 117, 2434–2445, https://doi.org/10.1021/jp312781c, 2013. a 5. Bernard, F., Papanastasiou, D. K., Papadimitriou, V. C., and Burkholder,
J. B.:
Infrared absorption spectra of linear (L2–L5) and cyclic (D3–D6)
permethylsiloxanes, J. Quant. Spectrosc. Ra., 202, 247–254,
https://doi.org/10.1016/j.jqsrt.2017.08.006, 2017. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|