Chlorophyll <i>a</i>-specific Δ<sup>14</sup>C, δ<sup>13</sup>C and δ<sup>15</sup>N values in stream periphyton: implications for aquatic food web studies

Author:

Ishikawa N. F.,Yamane M.,Suga H.,Ogawa N. O.,Yokoyama Y.,Ohkouchi N.

Abstract

Abstract. Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (−258 ‰ in April and −190 ‰ in October) were slightly lower than Δ14Cbulk values (−228 ‰ in April and −179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; −217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = −1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (−215 ‰ in April and −199 ‰ in October) and Cladophora sp. (−210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3