Chlorophyll <i>a</i>-specific Δ<sup>14</sup>C, δ<sup>13</sup>C and δ<sup>15</sup>N values in stream periphyton: implications for aquatic food web studies
-
Published:2015-11-26
Issue:22
Volume:12
Page:6781-6789
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Ishikawa N. F.,Yamane M.,Suga H.,Ogawa N. O.,Yokoyama Y.,Ohkouchi N.
Abstract
Abstract. Periphytic algae attached to a streambed substrate (periphyton) are an important primary producer in stream ecosystems. We determined the isotopic composition of chlorophyll a in periphyton collected from a stream flowing on limestone bedrock in the Seri River, central Japan. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and natural radiocarbon abundances (Δ14C) were measured in chlorophyll a (δ13Cchl, δ15Nchl and Δ14Cchl) and bulk (δ13Cbulk, δ15Nbulk and Δ14Cbulk) for periphyton, a pure aquatic primary producer (Cladophora sp.) and a terrestrial primary producer (Quercus glauca). Periphyton δ13Cbulk and δ13Cchl values did not necessarily correspond to δ13Cbulk for an algal-grazing specialist (Epeorus latifolium). Periphyton Δ14Cchl values (−258 ‰ in April and −190 ‰ in October) were slightly lower than Δ14Cbulk values (−228 ‰ in April and −179 ‰ in October) but were close to the Δ14C value for dissolved inorganic carbon (DIC; −217 ± 31 ‰), which is a mixture of weathered carbonates (Δ14C = −1000 ‰), CO2 derived from aquatic and terrestrial organic matters (variable Δ14C) and dissolved atmospheric CO2 (Δ14C approximately +30 ‰ in 2013). Δ14Cchl values were also close to Δ14Cbulk for E. latifolium (−215 ‰ in April and −199 ‰ in October) and Cladophora sp. (−210 ‰), whereas the Δ14Cbulk value for Q. glauca (+27 ‰) was closer to Δ14C for atmospheric CO2. Although the bulk isotopic composition of periphyton is recognised as a surrogate for the photosynthetic algal community, natural periphyton is a mixture of aquatic and terrestrial organic materials. Our results indicate that the bulk periphyton matrix at the study site consists of 89 to 95 % algal carbon (derived from 14C-depleted DIC) and 5 to 11 % terrestrial organic carbon (derived from 14C-enriched atmospheric CO2).
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference62 articles.
1. Allan, J. D. and Castillo, M. M.: Stream Ecology: Structure and Function of Running Waters, 2nd ed., Springer, Dordrecht, Germany, 436 pp., 2007. 2. Amir-Shapira, D., Goldschmidt, E. E., and Altman, A.: Chlorophyll catabolism in senescing plant tissues: In vivo breakdown intermediates suggest different degradative pathways for citrus fruit and parsley leaves, P. Natl. Acad. Sci. USA, 84, 1901–1905, 1987. 3. Beaumont, V. I., Jahnke, L. L., and Des Marais, D. J.: Nitrogen isotopic fractionation in the synthesis of photosynthetic pigments in Rhodobacter capsulatus and Anabaena cylindrica. Org. Geochem., 31, 1075–1085, 2000. 4. Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, 1983. 5. Bloemen, J., McGuire, M. A., Aubrey, D. P., Teskey, R. O., and Steppe, K.: Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees, New Phytol., 197, 555–565, 2013.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|