The role of mixotrophic protists in the biological carbon pump

Author:

Mitra A.,Flynn K. J.ORCID,Burkholder J. M.,Berge T.,Calbet A.,Raven J. A.,Granéli E.,Glibert P. M.,Hansen P. J.,Stoecker D. K.,Thingstad F.,Tillmann U.,Våge S.,Wilken S.,Zubkov M. V.

Abstract

Abstract. The traditional view of the planktonic foodweb describes consumption of inorganic nutrients by photo-autotrophic phytoplankton, which in turn supports zooplankton and ultimately higher trophic levels. Pathways centred on bacteria provide mechanisms for nutrient recycling. This structure lies at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative paradigm, which sees the bulk of the base of this foodweb supported by protist plankton (phytoplankton and microzooplankton) communities that are mixotrophic – combining phototrophy and phagotrophy within a~single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only within immature environments (e.g., spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists dominate in more mature systems (e.g., temperate summer, established eutrophic systems and oligotrophic systems); the more stable water columns suggested under climate change may also be expected to favour these mixotrophs. We explore how such a predominantly mixotrophic structure affects microbial trophic dynamics and the biological pump. The mixotroph dominated structure differs fundamentally in its flow of energy and nutrients, with a shortened and potentially more efficient chain from nutrient regeneration to primary production. Furthermore, mixotrophy enables a direct conduit for the support of primary production from bacterial production. We show how the exclusion of an explicit mixotrophic component in studies of the pelagic microbial communities leads to a failure to capture the true dynamics of the carbon flow. In order to prevent a misinterpretation of the full implications of climate change upon biogeochemical cycling and the functioning of the biological pump, we recommend inclusion of multi-nutrient mixotroph models within ecosystem studies.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3