The role of mixotrophic protists in the biological carbon pump
Author:
Mitra A., Flynn K. J.ORCID, Burkholder J. M., Berge T., Calbet A., Raven J. A., Granéli E., Glibert P. M., Hansen P. J., Stoecker D. K., Thingstad F., Tillmann U., Våge S., Wilken S., Zubkov M. V.
Abstract
Abstract. The traditional view of the planktonic foodweb describes consumption of inorganic nutrients by photo-autotrophic phytoplankton, which in turn supports zooplankton and ultimately higher trophic levels. Pathways centred on bacteria provide mechanisms for nutrient recycling. This structure lies at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative paradigm, which sees the bulk of the base of this foodweb supported by protist plankton (phytoplankton and microzooplankton) communities that are mixotrophic – combining phototrophy and phagotrophy within a~single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only within immature environments (e.g., spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists dominate in more mature systems (e.g., temperate summer, established eutrophic systems and oligotrophic systems); the more stable water columns suggested under climate change may also be expected to favour these mixotrophs. We explore how such a predominantly mixotrophic structure affects microbial trophic dynamics and the biological pump. The mixotroph dominated structure differs fundamentally in its flow of energy and nutrients, with a shortened and potentially more efficient chain from nutrient regeneration to primary production. Furthermore, mixotrophy enables a direct conduit for the support of primary production from bacterial production. We show how the exclusion of an explicit mixotrophic component in studies of the pelagic microbial communities leads to a failure to capture the true dynamics of the carbon flow. In order to prevent a misinterpretation of the full implications of climate change upon biogeochemical cycling and the functioning of the biological pump, we recommend inclusion of multi-nutrient mixotroph models within ecosystem studies.
Publisher
Copernicus GmbH
Reference68 articles.
1. Anderson, C. R., Kudela, R. M., Benitez-Nelson, C., Sekula-Wood, E., Burrell, C. T., Chao, Y., Langlois, G., Goodman, J., and Siegel, D. A.: Detecting toxic diatom blooms from ocean color and a regional ocean model, Geophys. Res. Lett. 38, LO4603, https://doi.org/10.1029/2010GL045858, 2011. 2. Andersson, A., Larsson, U., and Hagström, A.: Size-selective grazing by a microflagellate on pelagic bacteria, Mar. Ecol.-Prog. Ser., 33, 51–57, 1986. 3. Azam, F. and Worden, A. Z.: Microbes, molecules, and marine ecosystems, Science, 303, 1622–1624, 2004. 4. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F.: The ecological role of water-column microbes in the sea, Mar. Ecol.-Prog. Ser., 10, 257–263, 1983. 5. Burkholder, J. M. and Glibert, P. M.: Eutrophication and oligotrophication, in: Encyclopedia of Biodiversity, edited by: Levin, S., 2nd edn., Vol. 3., Academic Press, Waltham (Massachusetts), 347–371, 2013.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|