On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological time scales
Author:
Buendía C., Arens S., Hickler T., Higgins S. I., Porada P.ORCID, Kleidon A.ORCID
Abstract
Abstract. In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and ecological time scales under different environmental settings.
Publisher
Copernicus GmbH
Reference71 articles.
1. Allen, M., Swenson, W., Querejeta, J., Egerton-Warburton, L., and Treseder, K.: Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi, Annu. Rev. Phytopathol., 41, 271–303, 2003. 2. Amiotte Suchet, P. and Probst, J.-L.: A global 1 ° by 1 ° distribution of atmospheric/soil CO2 consumption by continental weathering and of riverine HCO3 yield, Technical report, Centre National de la Recherche Scientifique, Center de Geochemie de la Surface, 1995. 3. Arens, S.: Global limits on silicate weathering and implications for the silicate weathering feedback, Ph.D. thesis, Chemisch-Geowissenschaftlichen Fakultät, Friedrich-Schiller-Universität Jena, 2013. 4. Arens, S. and Kleidon, A.: Eco-hydrological versus supply-limited weathering regimes and the potential for biotic enhancement of weathering at the global scale, Appl. Geochem., 26, 274–278, https://doi.org/10.1016/j.apgeochem.2011.03.079, 2011. 5. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., and Vivanco, J. M.: The role of root exudates in rhizosphere interactions with plants and other organisms, Annu. Rev. Plant Biol., 57, 233–266, 2006.
|
|