Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two <sup>13</sup>CO<sub>2</sub> labelling techniques
Author:
Studer M. S., Siegwolf R. T. W., Abiven S.ORCID
Abstract
Abstract. Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: the pulse and the continuous labelling. We evaluate how these techniques perform to estimate the C transfer velocity, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides x nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom% 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom% 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and the microbial biomass was extracted from the soil. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we suggest to use a logistic function. Pulse labelling is best suited to assess the maximum C transfer velocity from the leaves to other compartments. With continuous labelling, the mean transfer velocity through a compartment, including short-term storage pools, can be observed. The C partitioning between the plant-soil compartments was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the 13C import and export was at equilibrium. The C mean residence time estimated by the rate constant of the exponential and logistic function was not valid here. However, the duration of the accumulation phase (continuous labelling) could be used to estimate the C residence time. Pulse and continuous labelling techniques are both well suited to assess C cycling. With pulse labelling the dynamics of fresh assimilates can be traced, whereas the continuous labelling gives a more integrated result on C cycling, due to the homogeneous labelling of C pools and fluxes. The logistic model suggested here, has the potential to assess different parameters of C cycling independent on the sampling date and with no disputable assumptions.
Publisher
Copernicus GmbH
Reference42 articles.
1. Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R.: Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter, Adv. Agron., 100, 155–250, 2008. 2. Barbaroux, C., Bréda, N., and Dufrêne, E.: Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica), New Phytol., 157, 605–615, 2003. 3. Barthel, M., Hammerle, A., Sturm, P., Baur, T., Gentsch, L., and Knohl, A.: The diel imprint of leaf metabolism on the δ13C signal of soil respiration under control and drought conditions, New Phytol., 192, 925–938, 2011. 4. Bonvehi, J. S., Jorda, R. E., and Jaen, J. A.: The ripening process of kiwifruits (Actinidia deliciosa) grown in Catalonia, Spain, J. Food Quality, 20, 371–380, 1997. 5. Bowling, D. R., Pataki, D. E., and Randerson, J. T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes, New Phytol., 178, 24–40, 2008.
|
|