Effects of mowing on N<sub>2</sub>O emission from a temperate grassland in Inner Mongolia, Northern China

Author:

Zhang L.,Wang Q.,Laanbroek H. J.,Wang C.,Guo D.,Li L.

Abstract

Abstract. Grazing and mowing are two common practices for grassland management. Mowing is now recommended as an alternative to traditional grazing for grassland conservation in Inner Mongolia, northern China. Many studies have revealed that both mowing and grazing may alter ecosystem properties in various ways. However, little attention has been paid to the effect of mowing on trace gas emissions, especially on N2O flux. In this study, we conducted an experiment to investigate the effects of mowing on N2O fluxes from a semiarid grassland in Inner Mongolia. The mowing experiment, which started in 2003, comprised four mowing intensity treatments, i.e. mowing heights at 2, 5, 10 and 15 cm above the soil surface, respectively, and a control of non-mowing, with five replicates. Gas fluxes were measured through a closed static chamber technique during the growing seasons (usually from May to September, depending on local climate at the time) of 2008 and 2009, respectively. Our results showed that mowing decreased N2O emissions, above-ground biomass and total litter production. N2O emissions were greater in May and June than in other sampling periods, regardless of treatments. A co-relationship analysis suggested that variations in seasonal N2O fluxes were mainly driven by variations in soil moisture and microbial biomass nitrogen, except in July and August. In July and August, above-ground plant biomass and soil total nitrogen became the major drivers of N2O fluxes under the soil temperatures between 16 °C and 18 °C. Overall, our study indicated that the introduction of mowing as a management practice might decrease N2O emissions in grasslands, and both mowing height and soil properties affected the magnitude of the reduction. Our findings imply that grasslands, along with proper management practices, can be a N2O sink mitigating the rise of N2O in the atmosphere.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3