Dissolution of a submarine carbonate platform by a submerged lake of acidic seawater

Author:

Humphreys Matthew P.ORCID,Meesters Erik H.,de Haas Henk,Karancz Szabina,Delaigue Louise,Bakker Karel,Duineveld Gerard,de Goeyse Siham,Haas Andreas F.,Mienis FuruORCID,Ossebaar Sharyn,van Duyl Fleur C.ORCID

Abstract

Abstract. Submarine sinkholes are found on carbonate platforms around the world. They are thought to form and grow when groundwater interactions generate conditions corrosive to carbonate minerals. Because their morphology can restrict mixing and water exchange, the effects of biogeochemical processes can accumulate such that the sinkhole water properties considerably diverge from the surrounding ocean. Studies of sinkhole waters can therefore reveal new insights into marine biogeochemical cycles; thus sinkholes can be considered “natural laboratories” where the response of marine ecosystems to environmental variations can be investigated. We conducted the first measurements in recently discovered sinkholes on Luymes Bank, part of Saba Bank in the Caribbean Netherlands. Our measurements revealed a plume of gas bubbles rising from the seafloor in one of the sinkholes, which contained a constrained body of dense, low-oxygen ([O2] = 60.2 ± 2.6 µmol kg−1), acidic (pHT = 6.24 ± 0.01) seawater that we term the “acid lake”. Here, we investigate the physical and biogeochemical processes that gave rise to and sustain the acid lake, the chemistry of which is dominated by the bubble plume. We determine the provenance and fate of the acid lake's waters, which we deduce must be continuously flowing through. We show that the acid lake is actively dissolving the carbonate platform, so the bubble plume may provide a novel mechanism for submarine sinkhole formation and growth. It is likely that the bubble plume is ephemeral and that other currently non-acidic sinkholes on Luymes Bank have previously experienced acid lake phases. Conditions within the acid lake were too extreme to represent future marine environmental responses to anthropogenic CO2 emissions on human timescales but may reflect the impact of proposed schemes to mitigate climate change by the deliberate addition of CO2 and/or alkalinity to seawater. Other Luymes Bank sinkholes did host conditions analogous to projections for the end of the 21st century and could provide a venue for studies on the impacts of anthropogenic CO2 uptake by the ocean.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3